Compact Ocean Wind Vector Radiometer (COWVR)

Shannon Brown, Principal Investigator Shannon.T.Brown@jpl.nasa.gov

Amarit Kitiyakara, Project Manager Amarit.Kitiyakara@jpl.nasa.gov

Jet Propulsion Laboratory, California Institute of Technology

Microwave Environmental Observation

- Passive microwave observations have provided critical weather and climate data for over 30 years
- These systems have been costly and not suitable for small satellite constellations
- The Compact Ocean Wind Vector Radiometer represents a new low cost architecture for passive microwave weather sensors

COWVR Measurement Capability

Ocean Surface Wind Vector

Snow Water Equivalent

Cloud Liquid Water

Precipitable Water Vapor

18 channels:

- 18.7, 23.8, 33.9 GHz
- V,H,+45,-45,LCP,RCP
- < 0.3 K TB uncertainty</p>

360° conical imaging

- Rotation rate: 30 RPM
- Spatial resolution: < 35 km
- Swath width: 1012 km
- Earth Incidence Angle: 51.7°

Sea Ice

Precipitation

COWVR Unique 2-look Capability

2-Look Algorithm

- COWVR has unique 360° unobstructed field of view
- COWVR wind direction retrieval performance benefits significantly from fore/aft viewing geometry (Hilburn et al., 2015)
 - Observations at two azimuth angles all but eliminate ambiguities
 - Improves performance at low winds

COWVR Technology Demonstration Sensor

- The COWVR instrument is fully flight qualified and meets all performance objectives
- Expected to perform as well as, or better than prior 1-look radiometers (e.g. WindSat)

COWVR Wind Vector Error Pre-Launch Performance				
	Low Winds	Moderate Winds	High Winds	
	(<6 m/s)	(6-12 m/s)	(> 12 m/s)	
Objective ¹	40°	17°	11°	
	1 m/s	1 m/s	1 m/s	
Threshold ¹	50°	25°	14°	
	2 m/s	2 m/s	2 m/s	
COWVR CBE	38°	16°	8°	
	1 m/s	1 m/s	1 m/s	

Unique COWVR Design

- COWVR novel design specifically addresses complex, costly and risky aspects of legacy sensor design
 - Electronic Polarization Basis Rotation technique eliminates complex and costly spin mechanism
 - Single broadband feed and compact MMIC receivers simplify radiometer assembly and significantly reduce mass/power/volume
 - Radiometer and electronics are stationary, minimizing the spun mass and thereby reducing spacecraft accommodation complexity

	WindSat	COWVR
Channels (GHz)	6.8 (x2), 10.7 (x6) 18.7 (x6), 23.8 (x2), 36.5 (x6)	18.7 (x6), 23.8 (x6) 33.9 (x6)
Feeds	11	1
Receivers	22 independent receivers	2 three frequency polarimetric receivers
Mass	330 kg	69.9 kg
Power	350 W	45.3 W (inst. power)
Spun Momentum	190 N-m-s	4 N-m-s
EDRs	Wind vector, TPW, CLW, precip, sea ice, SWE, soil moisture, SST	Wind vector, TPW, CLW, precip, sea ice, SWE

Instrument Fields of View

(slide 1 of 2)

Instrument Fields of View

(slide 2 of 2)

Key Requirements and Interfaces

Electrical interfaces

- Communication via RS-422/UART
- Bus provides system time message and PPS
- Bus provides RS-422 discretes (COWVR assumes 2)
- Bus power 28 ± 6V, independent high power and critical services (SHM)
- Spacecraft controls 2 heater zones (optional, depending on orbit)
- Bus monitored thermistors available for health monitoring

Key Requirements

- Spacecraft attitude knowledge 0.02° 3-sigma
- Unblocked 360° field of view for the reflector.
- Spacecraft offsets COWVR spun momentum (~4 Nms)
- Payload mounts to zenith deck of spacecraft

Orbit

- Polar, sun-synchronous orbit preferred
- Ideal orbit is 6am/6pm terminator orbit for thermal reasons
- Orbit altitude between 450-600 km
- Other orbits can be considered, thermal is a driver